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We present a stochastic analysis of a data set consisting of 1.25 × 107 samples
of the local velocity measured in the turbulent region of a round free jet. We find
evidence that the statistics of the longitudinal velocity increment v(r) can be described
as a Markov process. This new approach to characterize small-scale turbulence
leads to a Fokker–Planck equation for the r-evolution of the probability density
function (p.d.f.) of v(r). This equation for p(v, r) is completely determined by two
coefficients D1(v, r) and D2(v, r) (drift and diffusion coefficient, respectively). It is
shown how these coefficients can be estimated directly from the experimental data
without using any assumptions or models for the underlying stochastic process. The
solutions of the resulting Fokker–Planck equation are compared with experimentally
determined probability density functions. It is shown that the Fokker–Planck equation
describes the measured p.d.f.(s) correctly, including intermittency effects. Furthermore,
knowledge of the Fokker–Planck equation also allows the joint probability density of
N increments on N different scales p(v1, r1; . . . ; vN, rN) to be determined.

1. Introduction
The small-scale structure of fully developed turbulent flows is commonly believed

to form an universal state which exhibits stationarity, homogeneity, and isotropy
in a statistical sense, cf. Monin & Yaglom (1975) and Frisch (1995). This state is
characterized by the existence of a flux of energy, which is injected into the fluid
motion at large scales and is continuously transported towards smaller scales due
to the inherent instability of vortices of a scale r towards perturbations on smaller
scales. It is denoted the turbulent cascade and usually investigated by the statistics of
the longitudinal velocity increments v(r, t),

v(r, t) = e · [u(x+ er, t)− u(x, t)], (1.1)

where e denotes a unit vector with arbitrary direction and x denotes a reference
point. For experimental reasons, the unit vector e is commonly chosen to point in
the direction of the mean flow. Owing to homogeneity, the statistical properties of
v(r, t) are independent of the reference point x. Owing to isotropy, the statistics are
independent of the direction of the unit vector e. Owing to stationarity, the moments
〈v(r, t)n〉 = 〈v(r)n〉 are time independent.

It is of current interest to investigate whether the cascade exhibits self-similar
behaviour in a statistical sense. The nth-order moment, 〈v(r)n〉, also called the nth-
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order structure function, should obey the following relationship:

〈v(αr)n〉 = αζn〈v(r)n〉. (1.2)

The assumption of self-similarity (1.2) immediately implies scaling behaviour of the
structure functions:

〈v(r)n〉 =

(
r

r1

)ζn
〈v(r1)n〉. (1.3)

Applying dimensional analysis, Kolmogorov (1941) suggested that the scaling indices
ζn are linear functions of n

ζn = 1
3
n. (1.4)

Clearly, this is equivalent to a uniform rescaling of the velocity increments under the
scale transformation (1.2). As suggested by Landau, see Landau & Lifschitz (1987),
this uniform rescaling is violated due to the highly intermittent behaviour of the
energy dissipation rate ε. The consequence is multifractal scaling behaviour,

ζn = 1
3
n+ ∆n, (1.5)

where ∆n is a nonlinear function of n. On the basis of a refined similarity hypothesis
Kolmogorov (1962) and Obukhov (1962) suggested the so-called log-normal model
leading to a definite form of the corrections ∆n

∆n = − µ

18
n(n− 3). (1.6)

Here, µ is the so-called intermittency parameter.
Since Kolmogorov’s pioneering work, the problem of small-scale turbulence has

attracted the attention of many researchers. Several models for the scaling exponent
ζn have been proposed and numerous publications have been devoted to experimental
verifications of the scaling behaviour. For a review of recent developments in this
field, we refer to the paper by Sreenivasan & Antonia (1997) and the book by Frisch
(1995).

An alternative way to characterize the turbulent cascade is to describe it by means
of the probability density functions (p.d.f.) p(v, r) of the velocity increment on scale
r. Clearly, this approach is equivalent to the one via the structure functions (for
given p.d.f.(s) p(v, r), it is straightforward to calculate the moments 〈v(r)n〉). The
most significant characteristic of those p.d.f.(s) is their deviation from the Gaussian
shape. This effect is closely related to the nonlinear correction in equation (1.5).
Several parametrizations have been proposed to describe the shape of the p.d.f.(s), a
well-known example being the approach by Castaing, Gagne & Hopfinger (1990).

Moreover, the description of the turbulent cascade by differential equations in
the variables r and v for the probability densities p(v, r) has become of interest, see
Pedrizzetti & Novikov (1994). It has even been proposed that such equations can
be derived from the Navier–Stokes equation, cf. Yakhot (1998) and Takahashi et al.
(1999).

Furthermore, several recent investigations of turbulence point out that a more
detailed characterization of the universal turbulent state might be achieved by taking
into account the joint statistical properties of velocity increments on different scales ri,
see for instance Polyakov (1995), L’vov & Procaccia (1996), Chilla, Peinke & Castaing
(1996), Nelkin & Stolovitzky (1996) and Pedrizzetti, Novikov & Praskovsky (1996).

Friedrich & Peinke (1997) demonstrated that the mathematics of Markov processes
is a useful tool for experimental investigations of both the evolution of p(v, r) in r and
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the joint statistical properties of several increments on different scales. This method
has been applied to the analysis of the local rate of energy dissipation in the papers
of Naert, Friedrich & Peinke (1997), Marcq & Naert (1998) and Cleve & Greiner
(2000). Results for the case of velocity increments of non-isotropic turbulence were
reported by Lück, Peinke & Friedrich (1999) and Reisner et al. (1999). Extensions of
this method to analyse complex spatio-temporal data of other fields such as surface
roughness or financial data are given in the papers by Friedrich, Peinke & Renner
(2000a), Friedrich et al. (1998a) and Friedrich et al. (2000b).

Based on the results by Friedrich & Peinke (1997), recent publications by Donkov,
Donkov & Grancharov (1998), Davoudi & Tabar (1999), Dubrulle (2000) and Am-
blard & Brossier (1999) show the connection between common models of turbulence
and the Markov property. The connection with fusion rules of N-increment moments
as discussed by L’vov & Procaccia (1996) was pointed out by Davoudi & Tabar
(2000).

Here, we extend the previous analysis by Friedrich & Peinke (1997) considerably.
We show that it is possible to prove the existence of a Markov process experimentally
and, furthermore, to extract the differential equation for this Markov process directly
from the measured data. The procedure to obtain these results is presented in detail for
one example data set obtained in a round free jet with Reynolds number Reλ = 190.
The corresponding experimental setup is described in § 2. In § 3 the standard data
analysis is applied to our data. Section 4 is devoted to a brief summary of the
theory of Markov processes and its application to the analysis of the statistics of
the turbulent cascade. Section 5 contains the main results of our data analysis.
In particular, we give evidence for the Markovian properties, provide estimates for
Kramers–Moyal coefficients, and finally establish a Fokker–Planck equation which
governs the scale dependence of the conditional probability density p(v1, r1|v2, r2). We
explicitly demonstrate that the solution of this equation accurately reproduces the
empirically determined conditional probability densities. Owing to the Markovian
property, we finally obtain a representation of the N-point statistics of the turbulent
velocity cascade.

2. Experimental setup
The data were sampled by a hot-wire measurement in the central region of an air

into air round free jet. The setup consists of a controlling unit for the flow rate, an
inlet unit, the experimental chamber and the hot-wire anemometer, see figure 1.

The controlling unit (Bronkhorst EL-FLOW) for the flow rate allows us to vary the
flow rate over five orders of magnitude with an accuracy of 1%. The air is supplied
by a high-pressure reservoir (500 l at 200 bar) and pressure control units to diminish
the pressure. Filtering during the compression of the air guarantees a constant quality
(e.g. humidity) of the air.

The inlet unit consists of a calming area and a set of different grids settling the flow.
The nozzle has a convex inner profile according to a suggestion by H. E. Fiedler and
B. Blümel (Hermann-Föttinger-Institut Berlin, private communication) and an area
contraction ratio of 22. The results presented here were obtained with a nozzle with
an opening diameter of D = 8 mm. With the flow rates given above, the Reynolds
number Re based on the diameter of the nozzle can be properly adjusted up to
Remax = 3× 104.

The closed experimental chamber is 2.5 m high and has a cross-section of 1 m2. This
size guarantees that a turbulent jet does not interact with the walls up to a distance
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Figure 1. The experimental setup. The size of the experimental chamber is 2.5× 1× 1 m3.
Details on the various components are given in the text.
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Figure 2. Radial velocity profiles of the free jet at different distances from the nozzle. (a) Profile
in the near field of the jet. The streamwise distance from the nozzle is x = 0.25D, where D is the
diameter of the nozzle (D = 8 mm). Velocities are given in units of u0, the mean velocity at the
nozzle (u0 = 27 m s−1), while y, the radial distance from the centre of the jet, is expressed in units
of D (see figure 1 for a definition of the coordinates). (b) Several profiles in the far field. Circles:
x = 10D, squares: x = 50D, diamonds: x = 100D, triangles: x = 150D. The profiles are normalized
with respect to their respective maximal velocities 〈ux(x)〉max and the widths w(x), but have not been
shifted in y.

of more than 150 nozzle diameters. In order to avoid interactions with the walls, the
jet is relaminarized by a grid placed 1.5 m below the nozzle.

The time-resolved measurements of the local velocity in the direction of the mean
flow were performed by means of hot-wire anemometry (Dantec frame 90N10). We
used a single wire probe (Dantec 55P01) with a spatial resolution of 1.25 mm and a
maximal time resolution of 30 kHz, verified by a square-wave test. A positioning unit
enabled us to perform measurements at any position below the nozzle.

For an ideal free jet the flow close to the nozzle is expected to be non-turbulent
and to have a top-hat profile. Furthermore, the radial mean velocity profiles in the
far field (at a distance of more than 10D from the nozzle) are expected to have a
self-similar shape, cf. Rajaratnam (1976).



Markov properties of small-scale turbulence 387

103

102

101

103 104 105

Re

Rek

Figure 3. The Taylor Reynolds number Reλ as a function of the nozzle-based Reynolds number

Re. A fit to the experimental data (open circles) according to Reλ = c
√
Re (straight line) yields

c = 1.34± 0.03.

At a distance of 0.25D from the nozzle, measurements show that the mean velocity
has an almost ideal top-hat profile (as shown in figure 2a). The degree of turbulence,
i.e. the ratio of the mean velocity to its root mean square, is smaller than one percent.

When normalized with respect to maximum velocity and width, the measured mean
velocity profiles in the far field collapse into a single function, see figure 2(b). The
profiles shown in figure 2 have not been shifted in the direction perpendicular to the
mean flow, i.e. the maxima of all profiles are found at the centre of the jet. These
features give evidence of the temporal stability of the jet.

As a further test of the experimental system, we measured the Taylor Reynolds
number Reλ (for the procedure of determination see below) as a function of the
nozzle-based Reynolds number Re. The well-known square-root dependence as, for
instance, reported by Naert (1995) of Reλ on Re can be seen in figure 3. Note that
we obtain a constant prefactor of 1.3 instead of 0.5 given by Naert (1995). It is
likely that the different prefactors are due to the different inner profiles of the nozzles
(R. A. Antonia, private communication).

3. Standard analysis
Next, we apply a standard analysis for turbulence to our data. The results are

compared to typical results given in the literature. Our data set consists of 1.25× 107

samples of the local velocity measured at a sampling frequency of 8 kHz. A lowpass
filter (Stanford SR 640) at 20 kHz was used to suppress electronic noise. The sensor
was placed in the centre of the jet at a distance of 125D from the nozzle. The
velocity at the outlet of the nozzle was approximately 45.5 m s−1, which corresponds
to a nozzle-based Reynolds number of about 2.7 × 104. The mean velocity in the
centre of the jet at the distance of 125D had decreased to 2.25 m s−1 with a degree of
turbulence of 17%. To obtain the spatial velocity dependence u(x), we use Taylor’s
hypothesis of frozen turbulence. According to Taylor’s hypothesis, the resolution in
time corresponds to a spatial resolution of 0.28 mm.

For the integral length scale L, defined as

L =

∫ +∞

0

R(r) dr, (3.1)
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Figure 4. Estimation of the Taylor scale λ by extrapolation of λ2(r) (filled circles). The limit r → 0
was performed by fitting a polynomial of degree two (solid line) to the data. Open circles denote
the values used for the fit; values for r smaller than the spatial resolution of the sensor (1.25 mm)
were neglected.

we find a value of 6.7 cm. R(r) denotes the autocorrelation function of the velocity
u(x). Here and in the following, u(x) denotes the fluctuating part of the local velocity,
thus 〈u(x)〉 = 0.

In order to calculate the Taylor scale λ, we used the method proposed by Aronson
& Löfdahl (1993). For isotropic flows, λ2 can be written as

λ2 =
〈u(x)2〉
〈(∂u/∂x)2〉 . (3.2)

The partial derivative is approximated by velocity increments. Thus, λ is obtained as

λ2 = lim
r→0

λ2(r),

λ2(r) =
〈u(x)2〉r2

〈v(r)2〉 . (3.3)

The limit r → 0 is performed by fitting a polynomial to λ2(r), which yields λ = 6.6 mm
(see figure 4). The estimated λ enables us to determine the Taylor Reynolds number
Reλ = 190.

Another important scale for turbulence is the Kolmogorov length η, for which we
obtain a value of 0.3 mm. Thus the active length of the sensor corresponds to a spatial
resolution of 4η.

In order to validate the consistency of our data with well-known characteristics
of turbulence, we performed a scaling analysis of the r-dependence of the moments
and analysed the shape of the probability densities (p.d.f.(s)) p(v, r) of the velocity
increment v(r).

Scaling can be seen in the power spectrum (figure 5). The scaling exponents ζn of
the nth-moments of the increments as defined in equation (1.3) were evaluated using
extended self-similarity (ESS) as proposed by Benzi et al. (1993). Figure 6 displays our
results, which are in accordance with the values reported by Arneodo et al. (1996).
We restrict our analysis to exponents of up to order eight. Figure 7 displays the
function v8p(v, r), which has to be integrated in order to obtain 〈v(r)8〉. It becomes
evident that the wings of this function are not very well defined. The error of the
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Figure 5. Power spectrum of the data set. The dashed line indicates scaling behaviour according
to Kolmogorov (1941): E(k) ∝ k−5/3.
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Figure 6. The scaling exponents ζn versus the order n, determined by ESS according to Benzi et al.
(1993). Fitting the data according to Kolmogorov (1962) (solid line) yields µ = 0.227 (see equation
(1.6)). For the sixth-order exponent ζ6 we obtain a value of 1.77 which is in agreement with the
value of ζ6 = 1.74± 0.04 given by Arneodo et al. (1996).

eighth-order moment is therefore already considerably high. As this problem increases
with the order of the moment, the eighth-order moment is the highest one that can
be determined from data with 107 samples with reasonable accuracy. (For a detailed
quantitative discussion of this topic we refer the reader to the papers by Peinke et al.
(1993, 1994).)

Another approach to characterize intermittency in turbulence is to evaluate the
shape of the probability density functions p(v, r) (see figure 8). We use the well-known
formula given by Castaing et al. (1990) to parameterize the evolution of the shape
of the p.d.f.(s) in r and to obtain the shape parameter Λ2 as a function of r. As
shown in figure 9, our results are in good agreement with previous ones obtained
by Chabaud et al. (1994). We conclude that our data show the typical features of
small-scale turbulence, i.e. the typical intermittency effects.

4. Theory of Markov processes
This section gives a brief summary of the theory of Markov processes, which will

be of importance for our statistical analysis. (For further details of Markov processes
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Figure 8. Probability density functions (p.d.f.(s)) of the velocity increment v(r) at different scales r
(symbols) and fits according to the formula given by Castaing et al. (1990) (lines). The p.d.f.(s) are
normalized to their respective standard deviations σr and shifted in the vertical direction for clarity
of presentation.
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Figure 9. The shape parameter Λ2 determined by fitting the p.d.f.(s) of the increment with Castaing
et al.’s formula. Within the inertial range, Λ2 can be described by a power law: Λ2 ∝ rβ . From the
fit (straight line) we obtain β = 0.59± 0.01 in agreement with the values given by Chabaud et al.
(1994).
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we refer the reader to the book by Risken (1984) and the paper by Hänggi & Thomas
(1982).)

Fundamental quantities related to Markov processes are conditional probability
density functions. Given the joint probability density p(v1, r1; v2, r2) for finding the
increments v1(:= v(r1)) at a scale r1 and v2 at a scale r2 with r1 < r2, the conditional
p.d.f. p(v1, r1|v2, r2) is defined as

p(v1, r1|v2, r2) =
p(v1, r1; v2, r2)

p(v2, r2)
. (4.1)

p(v1, r1|v2, r2) denotes the conditional probability density for the increment v1 at a scale
r1 given an increment v2 at a scale r2. It should be noted that the small scale r1 lies
within the larger scale r2 (see equation (1.1): the increments v1 and v2 are calculated
for the same reference point x).

Higher-order conditional probability densities can be defined in an analogous way:

p(v1, r1|v2, r2; . . . ; vN, rN) =
p(v1, r1; v2, r2; . . . ; vN, rN)

p(v2, r2; . . . ; vN, rN)
. (4.2)

Again, the smaller scales ri are nested inside the larger scales ri+1 (with the common
reference point x).

The stochastic process in r is a Markov process, if the conditional probability
densities fulfil the following relations:

p(v1, r1|v2, r2; v3, r3; . . . vN, rN) = p(v1, r1|v2, r2) (4.3)

with r1 < r2 < r3 < · · · < rN . As a consequence of (4.3), each N-point probability den-
sity p(v1, r1; v2, r2; . . . ; vN, rN) can be determined as a product of conditional probability
density functions:

p(v1, r1; . . . vN, rN) = p(v1, r1|v2, r2) . . . p(vN−1, rN−1|vN, rN)p(vN, rN). (4.4)

Equation (4.4) indicates the importance of the conditional p.d.f. for Markov pro-
cesses. Knowledge of p(v, r|v0, r0) (for arbitrary scales r and r0 with r < r0) is sufficient
to generate the entire statistics of the velocity increment encoded in the N-point
probability density p(v1, r1; v2, r2; v3, r3; . . . ; vN, rN).

For Markov processes the conditional probability density fulfils a master equation
which can be put into the form of a Kramers–Moyal expansion:†

−r ∂
∂r
p(v, r|v0, r0) =

∞∑
k=1

(
− ∂

∂v

)k
Dk(v, r) p(v, r|v0, r0). (4.5)

The Kramers–Moyal coefficients Dk(v, r) are defined as the limit ∆r → 0 of the
conditional moments Mk(v, r,∆r):

Dk(v, r) = lim
∆r→0

Mk(v, r,∆r), (4.6)

Mk(v, r,∆r) =
r

k!∆r

∫ +∞

−∞
(ṽ − v)k p(ṽ, r − ∆r|v, r) dṽ. (4.7)

† Note that, in contrast to the usual definition as, for example, given by Risken (1984), we
multiplied both sides of the Kramers–Moyal expansion by r (see also equation (4.7)). This is
equivalent to the logarithmic length scale λ = ln(L/r) used by Friedrich & Peinke (1997). The
negative sign of the left-hand side of equation (4.5) is due to the direction of the cascade toward
smaller scales r.
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For a general stochastic process, all Kramers–Moyal coefficients are different from
zero. According to Pawula’s theorem, however, the Kramers–Moyal expansion stops
after the second term, provided that the fourth-order coefficient D4(v, r) vanishes. In
that case, the Kramers–Moyal expansion reduces to a Fokker–Planck equation (also
known as the backwards or second Kolmogorov equation):

−r ∂
∂r
p(v, r|v0, r0) =

{
− ∂

∂v
D1(v, r) +

∂2

∂v2
D2(v, r)

}
p(v, r|v0, r0). (4.8)

D1 is denoted the drift term, D2 the diffusion term. The probability density p(v, r)
has to obey the same equation:

−r ∂
∂r
p(v, r) =

{
− ∂

∂v
D1(v, r) +

∂2

∂v2
D2(v, r)

}
p(v, r). (4.9)

We remind the reader that the Fokker–Planck equation describes the probability
density function of a stochastic process generated by the Langevin equation (we use
Ito’s definition)

−r ∂
∂r
v(r) = D1(v, r) +

√
D2(v, r)f(r) (4.10)

where f(r) is a δ-correlated Gaussian white noise.
Here, the increment v(r) at a fixed point x is generated by a stochastic process

with respect to the continuous variable r. Thus, we consider snapshots of velocity
increments of the turbulent field as a function of r.

From the Kramers–Moyal expansion (4.5), which is also valid for the probability
density p(v, r), differential equations for the nth-order structure function are derived.
By multiplication with vn and integration with respect to v we obtain

−r ∂
∂r
〈vn(r)〉 =

∞∑
k=1

(−1)k
∫ +∞

−∞
vn
(
∂

∂v

)k
Dk(v, r) p(v, r) dv

=

n∑
k=1

n!

(n− k)!
∫ +∞

−∞
vn−kDk(v, r) p(v, r) dv. (4.11)

Let us now consider a constructed simple case:

Dk(v, r) = dkv
k, (4.12)

with constant dk . Then, we obtain

−r ∂
∂r
〈vn(r)〉 =

n∑
k=1

n!

(n− k)!dk〈v
n(r)〉. (4.13)

This equation implies scaling behaviour as discussed in § 1, equation (1.3). The
exponents are

ζn = −
n∑
k=1

n!

(n− k)!dk. (4.14)

Thus, we obtain a representation of the scaling indices in terms of the prefactors dk of
the Kramers–Moyal coefficients. If only d1 and d2 are different from zero we obtain

ζn = −d1n− n(n− 1)d2. (4.15)

In relating this behaviour to the statistics of velocity increments (with the condition
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ζ3 = 1), we arrive at Kolmogorov’s log-normal model, see equation (1.6). The corre-
sponding stochastic process is the following simple one:

−r ∂
∂r
v(r) = −d1v(r) +

√
d2v(r)f(r). (4.16)

Note that this corresponds to a pure multiplicative stochastic process.

5. Experimental results
The hypothesis concerning the Markovian properties of turbulent data sets imme-

diately fixes a framework for the analysis of the experimental data. First, one has to
give evidence of the Markovian properties according to equation (4.3). Secondly, the
evolution of conditional probability densities p(v, r|v0, r0) has to be specified on the
basis of the stochastic evolution equation, (4.5). To this end, we have to determine
the conditional moments Mk(v, r,∆r) at different scales r for various values of ∆r.

Practically, it is only possible to evaluate the lowest-order coefficients. Therefore, we
shall restrict our analysis to the coefficients of order one, two, and four. Approximating
the limit ∆r → 0, we obtain the Kramers–Moyal coefficients Dk(v, r). If the fourth-order
coefficient vanishes, the evolution equation (4.5) takes the form of a Fokker–Planck
equation, according to Pawula’s theorem. Since we consider experimental data, we can
only give upper bounds for the influence of higher-order terms, and we are not able
to conclude rigorously that the spatial evolution of the conditional probability density
obeys a Fokker–Planck equation. To verify our results, we compare the numerical
solutions of the Fokker–Planck equations (4.8) and (4.9) with the probability density
functions determined directly from the measured data.

For the rest of the article, velocities and velocity increments are given in units of
σ∞, which is defined according to

σ2
∞ = lim

r→∞〈v(r)
2〉. (5.1)

For our data set, σ∞ is 0.54 m s−1.

5.1. Markovian properties

Here we give evidence that the Markovian property (4.3) holds. Strictly speaking, the
relationships (4.3) have to be verified for all positive values of N as well as for each
set of scales r1, . . . , rN , a task which is clearly impossible. Nevertheless, experimental
data with typically 107 samples allow condition (4.3) to be verified for N = 3:

p(v1, r1|v2, r2; v3, r3) = p(v1, r1|v2, r2). (5.2)

In figure 10, the contour plots of p(v1, λ|v2, L/2) and p(v1, λ|v2, L/2; v3 = 0, L) have been
superposed (λ denotes the Taylor microscale, L the integral scale). The proximity of
corresponding contour lines yields evidence for the validity of equation (5.2) for the
chosen set of length scales. Additionally, two cuts through the conditional probability
densities are provided for fixed values of v2.

Figure 11 shows the same plots for a different set of length scales: r1 = L/2− λ/4,
r2 = L/2 and r3 = L/2 + λ/4. In this case, the contour lines clearly deviate from each
other: the necessary condition for a Markov process is violated.

So far, our results suggest that the condition (5.2) holds for large-scale differences
ri+1 − ri, whereas it is violated for smaller differences. In order to investigate the
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Figure 10. (a) Contour plots of the conditional p.d.f.(s) p(v1, r1|v2, r2) (dashed lines) and
p(v1, r1|v2, r2; v3 = 0, r3) (solid lines) for r1 = λ, r2 = L/2 and r3 = L. (b, c) Cuts through the con-
ditional p.d.f.(s) for v2 = +σ∞ and v2 = −σ∞. Symbols: p(v1, r1|v2, r2; v3 = 0, r3), lines: p(v1, r1|v2, r2).

crossover range between these two scales, we have performed a statistical test, the
so-called Wilcoxon test (a detailed description of the test is given in Appendix A).

For a chosen set of length scales r1, r2 and r3, we calculate the normalized expec-
tation value 〈t〉 of the number of inversions of the conditional velocity increments
v1|v2

and v1|v2 ,v3
. If condition (5.2) holds, 〈t〉 has a value of

√
2/π ≈ 0.8. Values of 〈t〉

larger than this indicate that equation (5.2) is violated.
The expectation value 〈t〉 is a function of the velocity increment v3 and the length

scales r1, r2, and r3. In order to reduce the number of parameters, we chose v3 to be
zero and the differences r3 − r2 and r2 − r1 to be equal: ∆r = r3 − r2 = r2 − r1.

In figure 12, 〈t〉 is plotted as a function of ∆r for several scales r1. While we obtain
a value close to

√
2/π for large ∆r, the Markov condition is violated for small values

of the separation ∆r. The scale at which this crossover takes place is close to the
Taylor scale λ and does not sensitively depend on the choice of r1. We should note
that these results are consistent with previous findings obtained by Friedrich, Zeller
& Peinke (1998b) with different stochastic measures.

The cascade can therefore be regarded as a Markov process on length scales larger
than the finite step of length λ. In units of this step size, the noise f acting on
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Figure 11. As figure 10 but for r1 = L/2, r2 = L/2 + λ/4 and r3 = L/2 + λ/2.

the stochastic process (see equation (4.10)) can be taken to be δ-correlated. Such
finite step sizes are a common feature of physical stochastic processes. In the case of
Brownian motion, the mean free path of the molecules defines a similar finite length.
The process can be considered to be Markovian on scales larger than this elementary
length scale. For turbulent flows, this elementary step seems to be of the order of
the Taylor length scale. Preliminary results on data with different Reynolds numbers
indicate that the Markov length is always close to the Taylor microscale, independent
of the Reynolds number (we examined data sets with 100 6 Reλ 6 1000) and the
experimental setup (we analysed data from free jet experiments, grid turbulence, and
the wake flow of a cylinder).

5.2. Kramers–Moyal coefficients

According to equations (4.1) and (4.7), the coefficients Mk(v, r,∆r) can be calculated
from the joint probability density functions. These joint p.d.f.(s) p(ṽ, r − ∆r; v, r)
are easily obtained from the experimental data by counting the number N(ṽ, v) of
occurrences of the two increments ṽ and v. Assuming the error of N(ṽ, v) to be given
by
√
N(ṽ, v), errors for the coefficients Mk(v, r,∆r) can be derived.

Figure 13 shows the results for M1 and M2 at the scale r1 = L/2 for ∆r = λ. The
coefficient M1 shows a linear dependence on the velocity increment with small second-
and third-order-term corrections, while M2 can be approximated by a polynomial of
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degree two in v:

M1(v, r,∆r) = O(r,∆r)− G(r,∆r)v +K(r,∆r)v2 − E(r,∆r)v3,

M2(v, r,∆r) = A(r,∆r)− D(r,∆r)v + B(r,∆r)v2.

}
(5.3)

This behaviour occurs for all scales r and all values of ∆r. Therefore, it is reasonable
to assume that the same v-dependence holds also for the Kramers–Moyal-coefficients:

D1(v, r) = o(r)− γ(r)v + κ(r)v2 − ε(r)v3,

D2(v, r) = α(r)− δ(r)v + β(r)v2,

}
(5.4)

and that the limit ∆r → 0 in equation (4.6) can be performed:

o(r) = lim
∆r→0

O(r,∆r), γ(r) = lim
∆r→0

G(r,∆r), etc. (5.5)

Figure 14 shows the slope G(r,∆r) of M1 for several values of ∆r at scale r = L/2.
For values of ∆r > λ, where the Markov condition is fulfilled, G exhibits a linear
dependence on ∆r, whereas in the range ∆r < λ, G deviates significantly from that
linear behaviour. Extrapolating G towards ∆r = 0 using a linear fit in the interval
λ 6 ∆r 6 2λ, we obtain the slope γ of D1(v, r) for r = L/2.
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Figure 15. The slope γ(r) of D1(v, r) as a function of r (circles). Throughout the inertial range, γ is
fitted well by γ(r) = γ0(r/λ, )1/3 (straight line). The fit yields γ0 = 0.61.

Performing this procedure at several scales r, we are able to determine the slope
γ as a function of r. As shown in figure 15, γ turns out to be proportional to r1/3

throughout the inertial range λ 6 r 6 L.
Let us summarize our results for the coefficients D1 and D2 (ρ := r/λ):

D1(v, r) = −o(r)− γ(r)v + κ(r)v2 − ε(r)v3,

o(r) = 0.0015ρ1.6, γ(r) = 0.61ρ1/3, κ(r) = 0.0096ρ, ε(r) = 0.0023ρ1.3;

D2(v, r) = α(r)− δ(r)v + β(r)v2,

α(r) = 0.033ρ1.25, δ(r) = 0.011ρ1.2, β(r) = 0.061ρ0.23.

 (5.6)

We should note that the functional dependences of the coefficients o(r), γ(r), . . . on
r given above are merely parametrizations of our experimental results. Power laws
were chosen, because they turned out to describe the measured values with sufficient
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∆r = λ (circles) and the fitting polynomial of degree two (line).

accuracy. However, further theoretical investigations may lead to slightly different
functional dependences.†

5.3. The fourth-order coefficient

Pawula’s theorem shows that it is of importance to estimate the fourth-order coefficient
and to decide whether it may be neglected. Figure 16 shows the experimental result
for M4(v, r = L/2,∆r = λ). M4 is finite, although it is significantly smaller than the
second-order coefficient M2. A remarkable result is that the errors of M4(v, r,∆r)
for small |v| are in the order of magnitude of the values themselves, and that for
increasing |v| they become much larger than the values. This is a first hint that within
the experimental limitations it is not possible to decide whether D4 is finite or zero.

The dependence of M4(v, r,∆r) on the velocity increment turns out to be fitted well
by a polynomial of order two in v with coefficients Ci depending on r and on ∆r (see
figure 16). Again, we assume that D4(v, r) shows the same dependence on v and that
the coefficients ci(r) can be obtained from the Ci(r,∆r):

D4(v, r) = c0(r)− c1(r)v + c2(r)v
2,

ci(r) = lim
∆r→0

Ci(r,∆r).

}
(5.7)

Performing the limit ∆r → 0 according to equation (5.7), we obtain (ρ = r/λ):

c0(r) = 4.31× 10−6ρ1.15, c1(r) = 1.15× 10−5ρ1.21, c2(r) = 9.20× 10−5ρ−0.33. (5.8)

These values are smaller by at least a factor of 10−3 than the corresponding values
for D2. But the question of whether they are small enough to be neglected still
remains open. A quantitative measure for the influence of D4 can be obtained from
the equation for the velocity structure functions (4.11). This equation shows that the
influence of higher-order Kramers–Moyal coefficients on 〈v(r)n〉 increases with order
n. Therefore, to prove that D4 can be neglected, it is sufficient to prove that it has

† It may be worth pointing out that the results given on D1 and D2 may be interpreted as a result of
a projection of the high-dimensional problem of turbulence on the subspace of longitudinal velocity
increments. A more sophisticated, multidimensional analysis (including, for example, tranversal
increments or the energy dissipation rate) will probably lead to simpler Kramers–Moyal coefficients,
which might be interpreted more easily. Similar improvements are expected for higher Reynolds
numbers.
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no influence on the highest-order moment that can be measured. Furthermore, it is
easily seen from this and the subsequent argumentation that, provided we can neglect
D4, all higher orders Dk can be neglected, too.

As shown previously (see figure 7), the eighth-order structure function is the
highest-order moment that can be determined accurately from a data set with only
107 samples. Equation (4.11) for n = 8 reads

−r ∂
∂r
〈v(r)8〉 = 8

∫ +∞

−∞
v7D1(v, r) p(v, r) dv

+ 8× 7

∫ +∞

−∞
v6D2(v, r) p(v, r) dv︸ ︷︷ ︸
T2(r)

+ 8× 7× 6

∫ +∞

−∞
v5D3(v, r) p(v, r) dv

+ 8× 7× 6× 5

∫ +∞

−∞
v4D4(v, r) p(v, r) dv︸ ︷︷ ︸

T4(r)

+ · · · . (5.9)

In order to estimate the influence of D4 in equation (5.9), we compare the term T4(r)
with T2(r). In particular, we will look for an upper bound of the ratio T4/T2. A
simple estimation (see Appendix B) allows us to express this ratio in terms of the
coefficients ci(r) and the constant term α(r) of D2:

T4(r)

T2(r)
6

6× 5(c0(r) + c1(r) + c2(r))

α(r)
= X(r). (5.10)

The measured values of X(r) are smaller than 10% throughout the inertial range,
see figure 17. In addition, the calculation shows that the relation 6 in (5.10) might
well be replaced by � (see Appendix B). We therefore conclude that D4 does not
have an important influence on the evolution of the eighth-order structure function.
Based on this result, we will proceed with the assumption that Pawula’s theorem
applies, i.e. we assume that the Markov process is described by a Fokker–Planck
equation. The physical meaning of this result is that the noise f(r) acting on the
process (see equation (4.10)) can be taken to be Gaussian distributed in addition to
its δ-correlation (see § 5.1).

5.4. Solutions of the Fokker–Planck equation

The results and assumptions of the preceding sections lead to Fokker–Planck equa-
tions for the p.d.f. p(v, r) and the conditional p.d.f. p(v, r|v0, r0), respectively (equations
(4.9) and (4.8)). The functions D1(v, r) and D2(v, r) can be estimated from experimental
data. The result for D1(v, r) shows a linear behaviour in v with small second- and
third-order-term corrections, while D2(v, r) was found to be quadratic in v (see (5.6)).

In order to test these results, we compared the (numerical) solutions of the Fokker–
Planck equation with the probability density functions obtained directly from the data.
It turned out that the agreement of the numerical solution with the experimental data
improves if some of the numerical values for D2 in (5.6) are slightly modified. The
best result was found by decreasing the values of the prefactors of δ(r) and β(r), the
linear and quadratic term in D2, respectively, from 0.011 to 0.009 for δ and from
0.061 to 0.043 for β.



400 Ch. Renner, J. Peinke and R. Friedrich

0.08

0.06

0.04

0.02

2 4 6 8 10

r/k

X

0
12

Figure 17. The ratio X, defined in § 5.3, as a function of scale r.

The reason for the discrepancy between these values and the ones given in (5.6)
can be traced back to the method used to fit the coefficient M2(v, r,∆r). From figure
13 it becomes evident that the fit, which weighs data points by the inverse of their
error, overestimates the wings of M2. Furthermore, the deviations of the fit from the
data are higher for negative values of v than for positive ones. Therefore, it turns out
that, in order to describe the wings of D2 as well as the minimum in the vicinity of
v = 0, the coefficients δ and β have to be chosen smaller than suggested by the fit.

Figure 18, which compares the solutions of the Fokker–Planck equation with
the experimental data for the p.d.f. p(v, r), proves that a Fokker–Planck equation
accurately describes the evolution of p(v, r) in r.

As mentioned above, the Fokker–Planck equation also governs the conditional p.d.f.
p(v, r|v0, r0). As a further test of our results, we calculated the solutions of the Fokker–
Planck equation (4.8). Figure 19 shows the result, again in comparison with measured
data, for p(v, r = 0.6L|v0, r0 = L). Taking into account the various uncertainties in
the determination of the coefficients D1 and especially D2, the agreement between the
solution of (4.8) and the data is remarkably good.

6. Discussion
The purpose of the present article was to show how the mathematical framework

of Markov processes can be applied to develop a successful statistical description
of fully developed, homogeneous, and isotropic turbulence. Within the experimental
limitations we were able to verify the Markovian properties of the statistics of the
velocity increment for scales (and differences of scales) larger than the Taylor scale.
Additionally, we evaluated the evolution equation for the conditional probability
densities, the so-called Kramers–Moyal expansion.

Furthermore, it is shown that this expansion can be approximated by a Fokker–
Planck equation, i.e. the terms of order three and higher are negligible. The comparison
of the solutions of the resulting Fokker–Planck equation with the experimental data
strongly supports our results for the coefficients D1 and D2.

Summarizing, we would like to point out that the theory of Markov processes
enables us to measure the differential equation describing the evolution of the p.d.f.(s)
of the velocity increment without using any additional models or assumptions. In
other words, we showed that, by analysing experimental data, it is possible to extract
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Figure 18. Comparison of the numerical solution of the Fokker–Planck equation (solid lines) for
the p.d.f.(s) p(v, r) with the p.d.f.(s) obtained directly from the experimental data (symbols). The
scales r are (from top to bottom): r = L, 0.6L, 0.35L, 0.2L and 0.1L. The p.d.f. at the largest scale L
was parametrized (dashed line) and used as initial condition for the Fokker–Planck equation. The
p.d.f.(s) have been shifted in the vertical direction for clarity of presentation.

a stochastic equation for the turbulent cascade describing the small-scale structure of
turbulence.

The results presented above have some impact on theoretical as well as on experi-
mental considerations.

First we would like to comment on the connection between our results and the
scaling behaviour of the structure functions. It can easily be shown that the equation
for the r-evolution of the structure functions, equation (C 5) (Appendix C), is solved
by a simple scaling ansatz (Snv (r) ∝ rζn) for the case where α and δ are zero and
γ as well as β are constant in r (see also equation (4.15)). The facts that neither α
nor δ are zero and that γ strongly depends on r are in contrast to such a simple
assumption. The connection to scaling is therefore more complicated. Indeed, the r-
dependence of the coefficients γ, α, . . . is not necessarily in contradiction to a (at least
approximate) scaling behaviour of the structure functions. Assuming strict scaling
behaviour for e.g. the third-order structure function, equation (C 5) merely imposes
a certain condition on the relation between the coefficients γ(r), β(r), δ(r) and the
second-order structure function. However, quantitative investigations concerning this
issue would be performed better on data sets at very high Reynolds number which
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Figure 19. Comparison of the numerical solution of the Fokker–Planck equation for the conditional
p.d.f. p(v, r|v0, r0) with the experimental data. (a) Contour plots of p(v, r|v0, r0) for r0 = L and
r = 0.6L. Dashed lines: numerical solution of (4.8), solid lines: experimental data. (b, c) Cuts
through p(v, r|v0, r0) for v0 = +σ∞ and v0 = −σ∞ respectively. Symbols: experimental data, lines:
numerical solution of the Fokker–Planck equation.

exhibit an extended scaling regime for the third-order moment and for which D1 is
given by the simple form (C 1).

We would also like to comment on the use of the absolute value of the velocity
increment, which is widely used to analyse velocity structure functions, cf. Benzi et al.
(1993), Arneodo et al. (1996). From the Fokker–Planck equation for the probability
density function p(v, r), it is possible not only to derive equations for the structure
functions Snv (r), but also for the moments Tn

v of the absolute value of the velocity
increment (see Appendix C). The equations for odd-order moments exhibit funda-
mental differences between Snv (r) and Tn

v (r) due to the non-vanishing values of the
coefficients α(r) and δ(r), the constant and linear term in D2, respectively. As shown
in Appendix C, those differences are by no means negligible. Thus one has to be more
cautious when replacing Snv (r) by Tn

v (r) as is commonly done, especially in the case
of low Reynolds number data.

The differences between Tn
v (r) and Snv (r) for uneven values of n are caused by the

constant and linear terms of D2, α(r) and δ(r). Furthermore, it has recently been shown
by Amblard & Brossier (1999) that the existence of those terms is in contradiction to
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the propagator approach by Castaing et al. Therefore, the question arises of whether
our results for α and δ are significant. As pointed out by Amblard & Brossier (1999),
those coefficients stem from a second-order quantity, namely the diffusion coefficient
D2, which is much more affected by experimental noise than the first-order coefficient
D1. (The growing influence of noise on the Kramers–Moyal coefficients can be seen by
comparing figures 13 and 16.) On the other hand, it becomes evident from figure 13(b)
that noise mainly acts on the wings of D2, while in the vicinity of v = 0 the function
D2(v, r) is well defined. Therefore, the coefficient of the fitting polynomial that can be
determined best (i.e. which has the smallest relative error) is the zero-order coefficient
α. Hence, the experiment definitely yields non-zero values for the coefficients α and
δ. (However, the above-mentioned preliminary results on a data set with Reλ = 1000
indicate that α and δ are decreasing functions of the Reynolds number, while β seems
to increase slightly with Re.)

Our findings are consistent with the well-documented fact that the maxima of
the p.d.f.(s) p(v, r) are Gaussian. It is known that a Fokker–Planck equation with a
diffusion coefficient constant in v (i.e. D2 = α(r)) has Gaussian solutions. As D2 can be
approximated by α for small values of |v|, the p.d.f.s are close to Gaussians near v = 0.
It is also well-known that the maxima of p(v, r) become steeper for higher Reynolds
numbers, which should result in a decrease of the coefficient α. Comparing our
analysis presented here with an analogous analysis of other data (e.g. inhomogeneous
turbulence (Lück et al. 1999), financial data (Ghashghaie et al. 1996; Friedrich et al.
2000a), and surface roughness (Friedrich et al. 1998a)) we see that the sharpness of
the maximum of the p.d.f.(s) is closely related to the size of α. Only for very sharp
p.d.f.(s) does α become close to zero.

Next, our result is discussed for the Langevin equation (4.10). Based on (C 1) the
Langevin equation can be taken to be of the form

−r ∂
∂r
v(r) = −γ(r)v(r) +

√
αf1(r) +

√
βv(r)f2(r). (6.1)

Here, we have introduced two noise sources f1(r) and f2(r). In order to obtain a dif-
fusion term D2(v, r) depending linearly on v we have to assume that the two fluctuating
forces f1(r) and f2(r) are correlated, where the cross-correlation is proportional to the
linear coefficient of D2, δ:

〈f1(r)f2(r)〉 ≈ δ(r − r′)δ. (6.2)

As pointed out by Dubrulle (2000), this correlation has an important physical impact:
assuming an even probability density at large scales (corresponding to vanishing flux
〈v(r)3〉), the stochastic process across scales generates skewness of the probability
densities due to correlation of additive and multiplicative noise sources.

The finding of a finite step size in the Markov process can be related to recently
proposed features of small-scale turbulence. We have presented evidence that below
a certain value of ∆r the Markov properties are not valid any more. This means
that a description of the disorder cannot be achieved by a one-dimensional Langevin
equation for such small scales. Either more variables or higher-order derivatives with
respect to r in the Langevin equation have to be taken into account. This indicates
some structural change of the disordered field, as may be caused by small-scale
coherent structures. Recently, Hatakeyama & Kambe (1997) have shown that the
statistics of turbulence can be modelled well by a random arrangement of small-scale
Burger vortices (typical size in the range of the Taylor microlength), see also Jimenez
& Wray (1998). The presence of this finite step size throughout the whole cascade
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might also cause problems in the determination of fusion rules as discussed by L’vov
& Procaccia (1996) and Fairhall et al. (1997).

This indicates the importance of increasing the understanding of the viscous sub-
range of turbulence. For our experimental data it is difficult to extract more features,
because the viscous length scale is close to the finite resolution of our sensors.

Summarizing, we have provided attempts to characterize N-point density functions
p(v1, r1; . . . ; vN, rN) of velocity increments of turbulent fields. This characterization
is facilitated by the observation of Markovian properties which allows the N-point
distribution p(v1, r1; . . . ; vN, rN) to be generated by a product of conditional probability
densities p(vi, ri|vi+1, ri+1). In the limit ∆r → 0 a path integral representation of the
probability density function is obtained, see Risken (1984). This limit has to be
taken in the sense of Re → ∞, where the Taylor length and the step size of the
cascade become zero. In our opinion, this path integral representation is a suitable
representation of the probability density of systems with flux equilibrium and plays a
similar role as the Gibbs distribution for equilibrium systems.

We acknowledge helpful discussions with F. Chilla, M. Greiner, P. Haenggi, T.
Kambe, St. Lück, A. Naert, J.-F. Pinton and B. Reisner. This work was partially
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Appendix A. The Wilcoxon test
Consider two stochastic variables x and y. In the present case, x denotes the velocity

increment v1 on scale r1, where the increment v2 has been observed at scale r2; y is
the increment v1 on a scale r1 under the condition that the increments v2 and v3 are
given at scales r2 and r3, respectively:

x(v2, r1, r2) = v1(r1)|v2(r2),

y(v2, v3, r1, r2, r3) = v1(r1)|v2(r2),v3(r3).

}
(A 1)

The hypothesis to be tested is

p(x) = p̃(y), (A 2)

where the probability density functions p and p̃ both are unknown.
Two samples x1, . . . , xn and y1, . . . , ym of independent realizations of x and y,

respectively, are taken from the data and sorted in ascending order. One obtains a
series like

x1 < x2 < y1 < x3 < y2 < y3 < x4 < · · · . (A 3)

The hypothesis p(x) = p̃(y) is tested by means of inversions. The number of inversions
for yi is defined as the number of values of xj with xj < yi. There are two inversions
for y1 and three for y2 in the example above.

Let Q denote the total number of inversions obtained by summation over all yj .
If p(x) = p̃(y), Q is Gaussian distributed with the mean value (see Bronstein &
Semendjajew 1991)

〈Q〉p=p̃ =
mn

2
(A 4)

and, for n, m > 25, with the standard deviation

σ(m, n) =

√
nm(n+ m+ 1)

12
. (A 5)
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Figure 20. The quantities q (open and full circles) and qα=0.05 (solid lines) as functions of v2 for
different sets of length scales (v3 is chosen to be zero). Full symbols indicate values of v2 with q > qα.
(a) r1 = L/2 and ∆r = r3 − r2 = r2 − r1 = 2λ. (b) r1 = L/2 and ∆r = r3 − r2 = r2 − r1 = λ/4.

Deviations from the expectation value (A 4) are usually measured by the absolute
value of the difference Q− 〈Q〉p=p̃:

q = |Q− 〈Q〉p=p̃| = q(v2, v3, r1, r2, r3). (A 6)

The hypothesis will only be accepted if the measured value of q is smaller than a
certain bound. This bound is determined by the so-called level of significance α and
is usually denoted by qα. For a given level α, qα is chosen in such a way that the
probability of measuring a value of q larger than the bound qα is equal to α. In other
words: even if p(x) = p̃(y) holds, there is still a probability of α of measuring a value
of q larger than qα.

As q is the absolute value of a Gaussian-distributed random variable with a
standard deviation given by equation (A 5), the bound qα can easily be calculated
from the inverse Gaussian error function (for details see Bronstein & Semendjajew
1991).

The test described above has to be performed for a large number of parameters.
According to the definitions (A 1) of x and y, q is a function of the velocity increments
v2 and v3 and the length scales r1, r2, and r3. In order to reduce the number of
parameters, we choose v3 to be zero and the differences r3− r2 and r2− r1 to be equal:
∆r = r3 − r2 = r2 − r1.

Figure 20(a) shows the quantities q and qα=0.05 as functions of v2 for rather large
scales, where we expect the Markov condition to be fulfilled: r1 = L/2 and ∆r = 2λ.
In fact, for only eight out of 163 values of v2 (i.e. 5%), q is larger than the bound qα.
We may therefore accept the hypothesis for the chosen set of length scales.

A different behaviour is obtained for small values of ∆r. In figure 20(b), q and
qα=0.05 are plotted for r1 = L/2 and ∆r = λ/4. The plot confirms what was suggested
by figure 11. For almost all values of v2, q is larger than qα. Consequently, equation
(A 2) is violated.

A quantitative measure for the validity of the hypothesis which is easier to handle
is the expectation value of the quantity t, where t is defined as follows:

t =
q

σ(m, n)
=
|Q− 1

2
mn|

σ(m, n)
(A 7)

(σ is the expected standard deviation of q, see equation (A 5)). If the hypothesis holds,
t is the absolute value of a Gaussian-distributed random variable with mean value
zero and standard deviation one. The expectation value 〈t〉 of t, where averaging is
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done with respect to v2, should therefore be
√

2/π ≈ 0.8. Values of 〈t〉 larger than√
2/π indicate that equation (5.2) is violated.

Appendix B. An estimation of the influence of the fourth-order
Kramers–Moyal coefficient

A quantitative measure for the importance of the influence of higher-order Kramers–
Moyal coefficients can be obtained by estimating the influence of the fourth-order
coefficient D4 on the evolution of the eighth-order structure function. Equation (4.11)
for n = 8 is given by (5.9). In particular, we will look for a lower bound of T2 and an
upper bound of T4. With the results obtained for D2 (see § 5.2), T2(r) can be written as

T2(r) = 8× 7

∫ +∞

−∞
v6D2(v, r) p(v, r) dv

= 8× 7

∫ +∞

−∞
v6(α(r)− δ(r)v + β(r)v2) p(v, r) dv

= 8× 7{α(r)〈v(r)6〉 − δ(r)〈v(r)7〉+ β(r)〈v(r)8〉}. (B 1)

The seventh-order moment 〈v(r)7〉 is negative in the inertial range; therefore, we can
take as a lower bound for T2(r)

T2(r) > 8× 7α(r)〈v(r)6〉 = T lb
2 (r). (B 2)

T4(r) can be written as

T4(r) = 8× 7× 6× 5

∫ +∞

−∞
v4(c0(r)− c1(r)v + c2(r)v

2) p(v, r) dv

= 8× 7× 6× 5 {c0(r)〈v(r)4〉 − c1(r)〈v(r)5〉+ c2(r)〈v(r)6〉}.
〈v(r)5〉 is negative in the inertial range, the term −c1(r)〈v(r)5〉 is therefore positive.

Throughout the inertial range, the moments of the absolute values of the velocity
increment fulfil the relation

〈|v(r)|n〉 6 〈|v(r)|n+1〉. (B 3)

Thus, we obtain as an upper bound for T4

T4(r) 6 8× 7× 6× 5 {c0(r) + c1(r) + c2(r)} 〈v(r)6〉 = Tub
4 (r). (B 4)

Equations (B 4) and (B 2) enable us to estimate the ratio T4(r)/T2(r):

T4(r)

T2(r)
6
Tub

4 (r)

T lb
2 (r)

=
6× 5(c0(r) + c1(r) + c2(r))

α(r)
= X(r). (B 5)

When estimating the lower bound for T2, we neglected the term containing the eighth-
order structure function (see equation (B 1)). The actual value of the ratio T4(r)/T2(r)
is therefore much smaller than the quantity X(r) defined above.

Appendix C. The equation for the moments of the absolute value of
the velocity increment

For the sake of simplicity, the following case will be considered:

D1(v, r) = −γ(r)v,
D2(v, r) = α(r)− δ(r)v + β(r)v2.

}
(C 1)
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(Preliminary results on other data sets indicate that the nonlinear terms in D1 can
be neglected for high Reynolds numbers (Reλ > 1000).) The Fokker–Planck equation
(4.9) with the coefficients (C 1) reads

−r ∂
∂r
p(v, r) =

∂

∂v
{γvp(v, r)}+

∂2

∂v2
{(α− δv + βv2) p(v, r)}. (C 2)

By changing the sign of v, the equation for p(−v, r) can be obtained:

−r ∂
∂r
p(−v, r) =

∂

∂v
{γvp(−v, r)}+

∂2

∂v2
{(α+ δv + βv2) p(−v, r)}. (C 3)

The equations for p(v, r) and p(−v, r) differ due to the linear term δ in D2. In general,
any even-order term in D1 and any odd-order term in D2 will cause a difference in
those equations. Let Snv (r) denote the velocity structure function of order n and Tn

v (r)
the corresponding structure function of the absolute value of the velocity increment.
In terms of the probability densities p(v, r) and p(−v, r), the structure functions Snv (r)
and Tn

v (r) read

Snv (r) = 〈v(r)n〉 =

∫ +∞

−∞
vnp(v, r) dv,

T n
v (r) = 〈|v(r)|n〉 =

∫ +∞

0

vn{p(v, r) + p(−v, r)} dv,

tnv (r) =

∫ +∞

0

vn{p(v, r)− p(−v, r)} dv.


(C 4)

The definition of the functions tnv (r) will prove to be convenient for the following
calculation. Inserting equations (C 2) and (C 3) into (C 4), it is possible to derive a
hierarchy of differential equations for Snv (r) and Tn

v (r):

r
∂

∂r
Snv (r) = n{γ(r)− (n− 1)β(r)}Snv (r)

−n(n− 1)α(r)Sn−2
v (r) + n(n− 1)δ(r)Sn−1

v (r),

r
∂

∂r
T n
v (r) = n{γ(r)− (n− 1)β(r)}Tn

v (r)

−n(n− 1)α(r)Tn−2
v (r) + n(n− 1)δ(r)tn−1

v (r).

 (C 5)

Equations (C 5) are valid for n > 2 and if the p.d.f.(s) fulfil the following conditions:
for v →∞, p(v, r) decays faster than any power of v, for v = 0 the slope of p(v, r) is
finite.

The equations for odd order exhibit fundamental differences. The terms containing
δ incorporate for Sn a large even moment Sn−1, while the integral tn−1, incorporated
for Tn, is small. Furthermore, the term depending on Sn−2 vanishes for n = 3, whereas
T 1 has a non-zero value.

The latter statement is remarkable. The equations for S3 and T 3 not only differ
due to the coefficient δ, as might be expected from equations (C 2) and (C 3), but
also due to the constant term α in D2. While δ is a rather small quantity with large
experimental errors (see § 5.4), α is experimentally well-defined (see § 6). The difference
between the equations for T 3 and S3 can therefore by no means be regarded as
negligible. As, in general, the equation for Tn depends on Tn−2 (see equation (C 5)),
the difference between T 3 and S3 will lead to differences between Tn and Sn for each
odd-order moment.

As a last remark, we want to point out that higher-order terms in equation (C 1),
as indicated experimentally in equation (5.6), lead to a set of equations for the
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moments which are not closed, i.e. the equation for the nth-order moment depends
on higher-order moments.
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